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Numerical Simulation of Ultracold Plasmas

Stanislav G. Kuzmin and Thomas M. O'Neil

Physics Department, University of California at San Diego, La Jolla CA 92093-0319 USA

Abstract.
In recent experiments, ultracold neutral plasmas were produced by photoionizing small clouds

of laser-cooled atoms. It has been suggested that the low initial temperature of these novel plasmas
leads directly to strong correlation and order. In contrast, we argue that rapid intrinsic heating raises
the electron temperature to the point where strong correlation cannot develop. The argument is
corroborated by a molecular dynamics simulation of the early time plasma evolution.

In these proceedings, Killian et al. describe an interesting new type of plasma: small,
ultracold, neutral, plasma clouds. The plasmas are produced by rapidly photoionizing
small laser cooled clouds of neutral atoms [1, 2, 3]. The energy (or frequency) of the
ionizing photons is adjusted to barely exceed the ionization energy of the atoms.

These novel plasmas present interesting challenges to theory. For example, it has been
suggested that the low initial temperature leads to strong correlation and order [1]. In
contrast, we argue that rapid intrinsic heating raises the electron temperature to the point
where strong correlation cannot develop.

The basic idea is easy to understand physically. For a plasma in thermal equilibrium,
the strength of correlation is determined by the coupling parameter F = e2 /akT, where
a is the Wigner-Seitz radius (i.e., 41Ea 3n/3 = 1). For the maximum density and lowest
electron temperature reported in the experiments [i.e., n • 2 x 109 cm- 3 and Te '' 0.1 K],
the electron coupling parameter has the value Fe • 30, and the ion coupling parameter is
much larger. Thus, one might expect the low temperatures to lead to strong correlation.

However, the plasma is not created in a state of thermal equilibrium. Before photoion-
ization, the neutral atoms are uncorrelated, so immediately after photoionization ion-ion
and electron-electron correlations are negligible. There may be some electron-ion cor-
relation that remains as an artifact of the ionization process, but this is not a thermal
equilibrium correlation. For example, there is no long range order.

Thermal equilibrium correlations can develop only through the action of Coulomb
interactions as the plasma evolves. However, as the correlations begin to develop, the
correlation energy is released to the electron plasma as heat, and this limits the strength
of correlation reached. To reach a correlation strength corresponding to F, -- 1, each
electron picks up thermal energy kTe -' e2/a. At this point the coupling parameter has
the value

Fe = e2 /akTe ý- (e2 /a)/(e2 /a) = 1,

so further development of correlation ceases. Even if the initial electron temperature
were zero, corresponding formally to infinite Fe, strong correlation would not develop.
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Heating associated with the liberation of correlation energy also was considered by
Murillo [4]. However, he treats the electrons only as a dielectric fluid that Debye shields
the interaction between the ions. His analysis focuses on the liberation of correlation
energy for a system of Debye shielded ions. Unfortunately, this approach misses the
electron heating that dominates the early stages of evolution.

Another way to understand the electron heating is to note that electrons are born in a
spatially varying potential, and immediately begin to move downhill. A typical electron
picks up kinetic energy e2 /a while moving an interparticle spacing, a. The time scale
for this initial heating is approximately a/ e2/ame ,- ap,1, where Owp is the plasma
frequency.

This heating is the beginning of the collisional process by which the plasma ap-
proaches a state of thermal equilibrium. For the low temperatures of these plasmas the
thermal equilibrium state is a recombined neutral gas. The collisional cascade of elec-
trons to deeper and deeper binding in the Coulomb wells of ions is called three-body
recombination [5]. In this process, the recombination energy is carried off by a second
electron (rather than a photon) and enters the plasma as heat. For these plasmas, three-
body recombination is very rapid-much faster than radiative recombination. Although
three-body recombination is not the focus of this paper, our simulation must include this
physics since the heating is a byproduct of the recombination. The initial recombina-
tion is into weakly bound (high n Rydberg states), so a classical molecular dynamics
simulation captures the essential physics.

The simulation is challenging because the time scale for an electron bound in one of
these Rydberg states is much shorter than the time scale for a typical electron. In plasma
simulations of this kind some authors have used two time scales: one for particles with
near neighbors and another for the remaining particles [6]. Another variant is to use
piecewise analytic solutions for Kepler orbits. We prefer a treatment that doesn't make
special assumptions about particles with near neighbors, but seamlessly encompasses
the continuum of time scales required.

Fortunately, such a treatment was developed previously in computational studies of
binary star formation in globular clusters. The binary stars are the analogue of the high
n Rydberg atoms, and the cluster is the analogue of the plasma cloud. We have adapted
a code developed originally by Aarseth [7] for the study of binary star formation.

The code is a molecular dynamics simulation in the sense that the force on a given
particle from each of the other particles is calculated directly. Time integration is effected
with a predictor-corrector scheme using a fourth-order polynomial fit to the orbit. The
crucial feature is that the time step for each particle is adjusted independently depending
on such factors as the rate of change of the acceleration. Thus, a bound electron can
have a much shorter time step than a typical electron without slowing down the whole
simulation. To keep all of the particles moving in near synchrony, the code advances
next the time step for the particle that is furthest behind in absolute time. To evaluate the
force on this particle, the other particle positions are extrapolated back in time to exact
synchrony using the polynomial fit to the orbits.

By using properly scaled length and time, the number of parameters that define a
simulation is reduced to a minimum. Here length is scaled by the Wigner-Seitz radius a
and time by the inverse of the plasma frequency 0o 1. With these scalings, the equations
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FIGURE 1. Scaled temperature versus scaled time.

of motion and initial conditions are specified by four parameters: the mass ratio mi/me,
the number of electrons (which is equal to the number of ions) N, the initial value of the
coupling parameter Fe, and a rounding parameter c for the Coulomb potential.

To avoid singularities, the Coulomb potential is rounded to the form

1/ vlr1 -r21 2 /a 2 +±

where F <K 1. For this simulation E is chosen to have the value 1/31, and this value is
small enough that the rounded potential is a good approximation to the Coulomb poten-
tial for the vast majority of particles. For a few deeply bound pairs, the approximation is
marginal [e.g., 1/E = 31 and max[Ebinding/(e 2 /a)] " 25], but these deeply bound pairs
are not the focus of this investigation.

To give correlations the maximum opportunity to develop, the initial electron temper-
ature and the initial ion temperature are taken to be zero, corresponding to Fe(t = )=
and Fi(I = 0) = -.

The mass ratio is chosen to have the value mi/me = 100. This relatively low value
insures that the ions have time to participate in the correlation dynamics during the
course of the simulation. The electron-electron correlation function relaxes to a steady-
state form in a few scaled time units, and the ion-ion correlation function in a time that
is longer by m,/il/me = 10. The simulation runs for trnax0Op = 70.9 scaled time units and
energy is conserved to an accuracy of 0.1%.

So that the correlation function takes the simple form G(rj,r 2 ) = G(Iri - r2 1), we
arrange the initial and boundary conditions to insure uniform plasma density. Specifi-
cally, 4096 electrons and 4096 ions are distributed randomly inside a spherical volume
bounded by a reflecting wall. The correlation measurements are made well away from
the wall. In scaled units, the radius of the sphere is determined by the number of elec-
trons, (rs/a)3 = N.

The initial density profiles for the experimentally produced plasma clouds were Gaus-
sian [1, 2, 3]. One should think of the uniform density spherical plasmas as a small
central section of a larger Gaussian cloud.

Figure 1 shows a plot of the scaled temperature [i.e., l/Fe(t) = kTe(t)/(e 2/a)] versus
the scaled time twOp. To obtain this plot, histograms of electron kinetic energies are
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FIGURE 2. Electron-electron correlation function, averaged from top = 3.5 to towP = 7.1.

made (excluding tightly bound electrons) and matched to Maxwellians. Rapid heating to
Fe • 1 is clearly visible. The longer-term slower heating is associated with three-body
recombination.

Figure 2 shows the electron-electron correlation function averaged over the time
interval to 1p = 3.5 to 7.1. The correlation function starts out flat, corresponding to
randomly distributed electrons, but quickly relaxes to the form shown in Fig. 2 and
retains this form. The only change with increasing time is in the width of the region near
Inr - r21 = 0 where Gee - -1. This value for Gee reflects the fact that it is energetically
unfavorable for two electrons to be at the same location, and the width of the region is
of order Irl - r21 - e2/kTe. In measurements of Gee at later times the width is observed
to decrease as the plasma temperature slowly increases.

For comparison, Fig. 3 shows the correlation function for a one component plasma in
thermal equilibrium at correlation strengths F = 1, 10, 20, and 40 [8]. As expected, the
correlation curve in Fig. 2 corresponds in shape to the F =1 curve in Fig. 3. The curves
in Fig. 3 for F = 10, 20, and 40 exhibit oscillations indicating the presence of local order,
that is, of a local lattice. The lack of these oscillations in Fig. 2 shows that such order is
missing in the electron distribution for the ultracold plasma.

Figure 4 shows the ion-ion correlation function averaged over the time interval tOp
67.4 to 70.9. Again the correlation function starts out flat and relaxes to the form shown,
although the relaxation time is longer than for the electrons. The absence of oscillations
shows that local order is missing.

Figure 5 shows the electron-ion correlation function averaged over the time interval
tp = 3.5 to 7.1. In this case, Gei is positive near Irl - r21 = 0, since it is energetically
favorable for an electron to be near an ion. However, this positive electron-ion correlation
is not an indication of the local order characteristic of strong correlation; rather it reflects
the beginning of recombination.

For this simulation, we see that intrinsic rapid heating prevents the development of
strong correlation (order) even though the initial electron and ion temperatures are zero
[i.e., F,(0) = Fi(0) = -o]. However, one might worry that the result is a consequence
of the low mass ratio or of the reflecting wall boundary conditions. After all, electron
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FIGURE 3. Correlation function for one component plasma.

0.5

1 -2 3 4 5 6

0-

- 0.5

-1

FIGURE 4. Ion-ion correlation function averaged over the time interval two, = 67.4 to imp 70.9.
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FIGURE 5. Electron-ion correlation function averaged over the time interval top = 3.5 to 7. 1.
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evaporation from an unbounded cloud is a cooling mechanism. Consequently, we carried
out an extensive simulation for 4096 electrons and 4096 ions in an unbounded cloud with
a Gaussian initial density distribution and a realistic mass ratio (for Xe ions). Again, we
observed the rapid initial heating to Fe f 1 followed by slower heating due to three-body
recombination. The evaporative cooling could not compete with the heating.

One important caveat is that the simulations follow only the early time evolution of
the plasma. Later, the plasma undergoes expansion, and this can be a strong cooling
mechanism that reduces the temperature. Our studies imply only that the initial low
temperatures do not directly lead to strong correlation and order during early times.

Finally, we note that the experiments themselves provide some evidence against early
strong correlation. The plasma expansion is driven by the electron pressure, but the
effective pressure becomes negative for a strongly correlated plasma [9]. If there wereno
intrinsic heating and the cloud were strongly correlated, the pressure would be negative
and the cloud would not expand.
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